If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2-45=0
a = 9; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·9·(-45)
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{5}}{2*9}=\frac{0-18\sqrt{5}}{18} =-\frac{18\sqrt{5}}{18} =-\sqrt{5} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{5}}{2*9}=\frac{0+18\sqrt{5}}{18} =\frac{18\sqrt{5}}{18} =\sqrt{5} $
| 4e=4e | | -40x+28=-4x^2-8x | | v2=121 | | 142=x-8(1-3x) | | -104=-8(x+7) | | 7x-11=3x=5 | | 6(-2k-8)+k=-92 | | -3(x-4)=2x-13 | | 5c+3(8–c)=8 | | -16(3-2x)=432 | | 8(b-6)+3=-85 | | 3.5=y/2 | | 15-2(a-4))=13 | | X+18x3=90 | | 6w+30=3(w+5) | | x=3/10+(x+14) | | 3/10z=0 | | -8=1.8c+32 | | 6/7(7/6x)=6/7(7) | | x=3/10+14 | | x+2(4-x)=2x-6-3x | | 18=3x-2(x-5)=0 | | 5(w-5)=-3w+15 | | 2(-6w+2)-3w=3(w-1)-4 | | 5(x+8)+x=88 | | 3u-12=-23 | | 3(x+1)-9=24 | | -132=6(4x+2) | | -9x-6=-3(2x-1)+6 | | -4x-6=2(x-9) | | -104=8(6x+5) | | 2y-(-7)=13 |